Experimental Investigations on Stretchability of an Austentic Stainless Steel 316L

Authors

Abstract:

The purpose of this investigation is to examine the viability of using the sheet metal for forming applications. Forming limit diagram (FLD) composed of negative and positive minor strain with respect to major strain which occurs at directional zero strain with the critical thickness of sheet metal. The negative minor strain region of FLD is predicted by localized necking. However there is no directional zero strain in the positive minor region of FLD is predicted with help of Marcinaik-Kuczynski assumption. The present work aims to determine the stretchability in terms of limiting strain of Austentic stainless steel 316L using M K analysis and hemi spherical dome stretching. Strain hardening exponent was derived from uni axial tensile test of Austentic stainless steel 316L under different in homogeneity conditions. C++ programme was developed to predict the theoretical FLD and results were compared with experimental value. The limiting strain of material is found as 0.4 in experimental and Marcinaik - Kuczynski analysis. Fractography shows the large amount of cleavage fracture and evidence for cleavage initiating because of other inclusions.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Characterization of CrN/TiN PVD Coatings on 316L Stainless Steel

In order to further enhance tribological properties 316 Low carbon stainless steel (L SS) used on mechanical parts. CrN/TiN with DC magnetron sputtering sources was carried out on PVD 316 L SS. The micro structure of the CrN/TiN coatings were investigated by Scanning electron microscope (SEM), X-ray Diffraction (XRD) and tribology properties were investigated on a Pin on Disc friction and wear ...

full text

Biomaterial Studies on AISI 316L Stainless Steel after Magnetoelectropolishing

The polarisation characteristics of the electropolishing process in a magnetic field (MEP – magnetoelectropolishing), in comparison with those obtained under standard/conventional process (EP) conditions, have been obtained. The occurrence of an EP plateau has been observed in view of the optimization of MEP process. Up-to-date stainless steel surface studies always indicated some amount of fre...

full text

Electrochemical polishing of 316L stainless steel slotted tube coronary stents.

Surface smoothness is one of the properties determining the performance of stents. Therefore, surface polishing shows its importance in the exploitation and production of stents. The present study explores electrochemical polishing of 316L stainless steel slotted tube coronary stents produced by laser cutting. Acid pickling was also studied as a pre-treatment of electrochemical polishing of the...

full text

TEM and AES investigations of the natural surface nano-oxide layer of an AISI 316L stainless steel microfibre.

The chemical composition, nanostructure and electronic structure of nanosized oxide scales naturally formed on the surface of AISI 316L stainless steel microfibres used for strengthening of composite materials have been characterised using a combination of scanning and transmission electron microscopy with energy-dispersive X-ray, electron energy loss and Auger spectroscopy. The analysis reveal...

full text

Electrochemical properties of 316L stainless steel with culturing L929 fibroblasts.

Potentiodynamic polarization and impedance tests were carried out on 316L stainless steel with culturing murine fibroblast L929 cells to elucidate the corrosion behaviour of 316L steel with L929 cells and to understand the electrochemical interface between 316L steel and cells, respectively. Potential step test was carried out on 316L steel with type I collagen coating and culturing L929 cells ...

full text

Micro abrasion-corrosion of AISI 316L stainless steel

In this study, the synergistic effects of abrasion and corrosion on AISI 316L stainless steel have been investigated using a micro-abrasion test rig. A series of results from abrasioncorrosion tests conducted using the micro-abrasion rig are presented. AISI 316L stainless steel has been studied under both pure abrasion and abrasion-corrosion conditions simulated by either distilled water or 3.5...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 1

pages  55- 64

publication date 2016-04-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023